Start: Mar, 26, 2015 15:30:00
2015年省赛最终选拔赛Round#2
End: Mar, 26, 2015 18:30:00
Time elapsed:
Time remaining:

Gibonacci number 1491

Time Limit:  2 s      Memory Limit:   64 MB
Submission:71     AC:7     Score:1

Description

In mathematical terms, the normal sequence F(n) of Fibonacci numbers is defined by the recurrence relation

F(n)=F(n-1)+F(n-2)

with seed values

F(0)=1, F(1)=1

In this Gibonacci numbers problem, the sequence G(n) is defined similar

G(n)=G(n-1)+G(n-2)

with the seed value for G(0) is 1 for any case, and the seed value for G(1) is a random integer t, (t>=1). Given the i-th Gibonacci number value G(i), and the number j, your task is to output the value for G(j)

Input

There are multiple test cases. The first line of input is an integer T < 10000 indicating the number of test cases. Each test case contains 3 integers i, G(i) and j. 1 <= i,j <=20, G(i)<1000000

Output

For each test case, output the value for G(j). If there is no suitable value for t, output -1.

Samples

input
4 1 1 2 3 5 4 3 4 6 12 17801 19
output
2 8 -1 516847